
Classification with Python
In this notebook we try to practice all the classification algorithms that we have learned in this course.

We load a dataset using Pandas library, and apply the following algorithms, and find the best one for this
specific dataset by accuracy evaluation methods.

Let's first load required libraries:

About dataset

This dataset is about past loans. The Loan_train.csv data set includes details of 346 customers whose loan
are already paid off or defaulted. It includes following fields:

Field Description

Loan_status Whether a loan is paid off on in collection

Principal Basic principal loan amount at the

Terms Origination terms which can be weekly (7 days), biweekly, and monthly payoff schedule

Effective_date When the loan got originated and took effects

Due_date Since it’s one-time payoff schedule, each loan has one single due date

Age Age of applicant

Education Education of applicant

Gender The gender of applicant

Let's download the dataset

'wget' is not recognized as an internal or external command,
operable program or batch file.

Load Data From CSV File

In [1]: import itertools
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import NullFormatter
import pandas as pd
import numpy as np
import matplotlib.ticker as ticker
from sklearn import preprocessing
%matplotlib inline

In [2]: !wget -O loan_train.csv https://cf-courses-data.s3.us.cloud-object-storage.appdomain.clo

In [4]: df = pd.read_csv('loan_train.csv')

https://skills.network/?utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=NA-SkillsNetwork-Channel-SkillsNetworkCoursesIBMDeveloperSkillsNetworkML0101ENSkillsNetwork20718538-2022-01-01

Unnamed:
0.1

Unnamed:
0 loan_status Principal terms effective_date due_date age education Gender

0 0 0 PAIDOFF 1000 30 9/8/2016 10/7/2016 45 High School
or Below male

1 2 2 PAIDOFF 1000 30 9/8/2016 10/7/2016 33 Bechalor female

2 3 3 PAIDOFF 1000 15 9/8/2016 9/22/2016 27 college male

3 4 4 PAIDOFF 1000 30 9/9/2016 10/8/2016 28 college female

4 6 6 PAIDOFF 1000 30 9/9/2016 10/8/2016 29 college male

(346, 10)

Convert to date time object

Unnamed:
0.1

Unnamed:
0 loan_status Principal terms effective_date due_date age education Gender

0 0 0 PAIDOFF 1000 30 2016-09-08 2016-10-
07 45 High School

or Below male

1 2 2 PAIDOFF 1000 30 2016-09-08 2016-10-
07 33 Bechalor female

2 3 3 PAIDOFF 1000 15 2016-09-08 2016-09-
22 27 college male

3 4 4 PAIDOFF 1000 30 2016-09-09 2016-10-
08 28 college female

4 6 6 PAIDOFF 1000 30 2016-09-09 2016-10-
08 29 college male

Data visualization and pre-processing
Let’s see how many of each class is in our data set

PAIDOFF 260
COLLECTION 86
Name: loan_status, dtype: int64

260 people have paid off the loan on time while 86 have gone into collection

Let's plot some columns to underestand data better:

df.head()

Out[4]:

In [5]: df.shape

Out[5]:

In [6]: df['due_date'] = pd.to_datetime(df['due_date'])
df['effective_date'] = pd.to_datetime(df['effective_date'])
df.head()

Out[6]:

In [7]: df['loan_status'].value_counts()

Out[7]:

In []: # notice: installing seaborn might takes a few minutes
#!conda install -c anaconda seaborn -y

Pre-processing: Feature selection/extraction

Let's look at the day of the week people get the loan

In [8]: import seaborn as sns

bins = np.linspace(df.Principal.min(), df.Principal.max(), 10)
g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set1", col_wrap=2)
g.map(plt.hist, 'Principal', bins=bins, ec="k")

g.axes[-1].legend()
plt.show()

In [9]: bins = np.linspace(df.age.min(), df.age.max(), 10)
g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set1", col_wrap=2)
g.map(plt.hist, 'age', bins=bins, ec="k")

g.axes[-1].legend()
plt.show()

In [11]: df['dayofweek'] = df['effective_date'].dt.dayofweek
bins = np.linspace(df.dayofweek.min(), df.dayofweek.max(), 10)
g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set1", col_wrap=2)
g.map(plt.hist, 'dayofweek', bins=bins, ec="k")
g.axes[-1].legend()
plt.show()

We see that people who get the loan at the end of the week don't pay it off, so let's use Feature binarization
to set a threshold value less than day 4

Convert Categorical features to numerical values
Let's look at gender:

Unnamed:
0.1

Unnamed:
0 loan_status Principal terms effective_date due_date age education Gender dayofw

0 0 0 PAIDOFF 1000 30 2016-09-08 2016-10-
07 45

High
School or

Below
male

1 2 2 PAIDOFF 1000 30 2016-09-08 2016-10-
07 33 Bechalor female

2 3 3 PAIDOFF 1000 15 2016-09-08 2016-09-
22 27 college male

3 4 4 PAIDOFF 1000 30 2016-09-09 2016-10-
08 28 college female

4 6 6 PAIDOFF 1000 30 2016-09-09 2016-10-
08 29 college male

Unnamed:
0.1

Unnamed:
0 loan_status Principal terms effective_date due_date age education Gender dayofw

0 0 0 PAIDOFF 1000 30 2016-09-08 2016-10-
07 45

High
School or

Below
male

1 2 2 PAIDOFF 1000 30 2016-09-08 2016-10-
07 33 Bechalor female

2 3 3 PAIDOFF 1000 15 2016-09-08 2016-09-
22 27 college male

3 4 4 PAIDOFF 1000 30 2016-09-09 2016-10-
08 28 college female

4 6 6 PAIDOFF 1000 30 2016-09-09 2016-10-
08 29 college male

In [14]: df.head()

Out[14]:

In [15]: df['weekend'] = df['dayofweek'].apply(lambda x: 1 if (x>3) else 0)
df.head()

Out[15]:

Gender loan_status
female PAIDOFF 0.865385
 COLLECTION 0.134615
male PAIDOFF 0.731293
 COLLECTION 0.268707
Name: loan_status, dtype: float64

86 % of female pay there loans while only 73 % of males pay there loan

Let's convert male to 0 and female to 1:

One Hot Encoding
How about education?

education loan_status
Bechalor PAIDOFF 0.750000
 COLLECTION 0.250000
High School or Below PAIDOFF 0.741722
 COLLECTION 0.258278
Master or Above COLLECTION 0.500000
 PAIDOFF 0.500000
college PAIDOFF 0.765101
 COLLECTION 0.234899
Name: loan_status, dtype: float64

Features before One Hot Encoding

Principal terms age Gender education

0 1000 30 45 0 High School or Below

1 1000 30 33 1 Bechalor

Unnamed:
0.1

Unnamed:
0 loan_status Principal terms effective_date due_date age education Gender dayofw

0 0 0 PAIDOFF 1000 30 2016-09-08 2016-10-
07 45

High
School or

Below
0

1 2 2 PAIDOFF 1000 30 2016-09-08 2016-10-
07 33 Bechalor 1

2 3 3 PAIDOFF 1000 15 2016-09-08 2016-09-
22 27 college 0

3 4 4 PAIDOFF 1000 30 2016-09-09 2016-10-
08 28 college 1

4 6 6 PAIDOFF 1000 30 2016-09-09 2016-10-
08 29 college 0

In [16]: df.groupby(['Gender'])['loan_status'].value_counts(normalize=True)

Out[16]:

In [17]: df['Gender'].replace(to_replace=['male','female'], value=[0,1],inplace=True)
df.head()

Out[17]:

In [18]: df.groupby(['education'])['loan_status'].value_counts(normalize=True)

Out[18]:

In [19]: df[['Principal','terms','age','Gender','education']].head()

Out[19]:

2 1000 15 27 0 college

3 1000 30 28 1 college

4 1000 30 29 0 college

Use one hot encoding technique to convert categorical varables to binary variables and
append them to the feature Data Frame

Principal terms age Gender weekend Bechalor High School or Below college

0 1000 30 45 0 0 0 1 0

1 1000 30 33 1 0 1 0 0

2 1000 15 27 0 0 0 0 1

3 1000 30 28 1 1 0 0 1

4 1000 30 29 0 1 0 0 1

Feature Selection

Let's define feature sets, X:

Principal terms age Gender weekend Bechalor High School or Below college

0 1000 30 45 0 0 0 1 0

1 1000 30 33 1 0 1 0 0

2 1000 15 27 0 0 0 0 1

3 1000 30 28 1 1 0 0 1

4 1000 30 29 0 1 0 0 1

What are our lables?

array(['PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF'],
 dtype=object)

Normalize Data
Data Standardization give data zero mean and unit variance (technically should be done after train test split)

array([[0.51578458, 0.92071769, 2.33152555, -0.42056004, -1.20577805,

In [21]: Feature = df[['Principal','terms','age','Gender','weekend']]
Feature = pd.concat([Feature,pd.get_dummies(df['education'])], axis=1)
Feature.drop(['Master or Above'], axis = 1,inplace=True)
Feature.head()

Out[21]:

In [22]: X = Feature
X[0:5]

Out[22]:

In [23]: y = df['loan_status'].values
y[0:5]

Out[23]:

In [24]: X= preprocessing.StandardScaler().fit(X).transform(X)
X[0:5]

 -0.38170062, 1.13639374, -0.86968108],
 [0.51578458, 0.92071769, 0.34170148, 2.37778177, -1.20577805,
 2.61985426, -0.87997669, -0.86968108],
 [0.51578458, -0.95911111, -0.65321055, -0.42056004, -1.20577805,
 -0.38170062, -0.87997669, 1.14984679],
 [0.51578458, 0.92071769, -0.48739188, 2.37778177, 0.82934003,
 -0.38170062, -0.87997669, 1.14984679],
 [0.51578458, 0.92071769, -0.3215732 , -0.42056004, 0.82934003,
 -0.38170062, -0.87997669, 1.14984679]])

Classification
Now, it is your turn, use the training set to build an accurate model. Then use the test set to report the
accuracy of the model You should use the following algorithm:

K Nearest Neighbor(KNN)
Decision Tree
Support Vector Machine
Logistic Regression

__ Notice:__

You can go above and change the pre-processing, feature selection, feature-extraction, and so on, to
make a better model.
You should use either scikit-learn, Scipy or Numpy libraries for developing the classification algorithms.
You should include the code of the algorithm in the following cells.

K Nearest Neighbor(KNN)
Notice: You should find the best k to build the model with the best accuracy.\ warning: You should not use
the loan_test.csv for finding the best k, however, you can split your train_loan.csv into train and test to find
the best k.

Train set: (276, 8) (276,)
Test set: (70, 8) (70,)

The best accuracy was 0.7857142857142857 with k = 7

Out[24]:

In [161… from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=4
print ('Train set:', X_train.shape, y_train.shape)
print ('Test set:', X_test.shape, y_test.shape)

In [162… from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
Ks = 10
std_acc = np.zeros(Ks-1)
mean_acc = np.zeros(Ks-1)

for i in range(1, Ks):
 kneighbors = KNeighborsClassifier(n_neighbors = i).fit(X_train, y_train)
 yhat = kneighbors.predict(X_test)
 mean_acc[i-1] = metrics.accuracy_score(y_test, yhat)
 std_acc[i-1]=np.std(yhat==y_test)/np.sqrt(yhat.shape[0])

print("The best accuracy was", mean_acc.max(), "with k =", mean_acc.argmax()+1)

array([0.65714286, 0.58571429, 0.74285714, 0.7 , 0.74285714,
 0.71428571, 0.78571429, 0.75714286, 0.75714286])

Decision Tree

['PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF']
['PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF']

['PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION'
 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF'
 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF']
['PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION'
 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'COLLECTION' 'PAIDOFF'
 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF']

The accuracy of the decision tree: 0.7714285714285715

In [163… mean_acc

Out[163]:

In [164… plt.plot(range(1,Ks),mean_acc,'g')
plt.fill_between(range(1,Ks),mean_acc - 1 * std_acc,mean_acc + 1 * std_acc, alpha=0.1)
plt.fill_between(range(1,Ks),mean_acc - 3 * std_acc,mean_acc + 3 * std_acc, alpha=0.10,c
plt.legend(('Accuracy ', '+/- 1xstd','+/- 3xstd'))
plt.ylabel('Accuracy ')
plt.xlabel('Number of Neighbors (K)')
plt.tight_layout()
plt.show()

In [165… from sklearn.tree import DecisionTreeClassifier
loantree = DecisionTreeClassifier(criterion = 'entropy', max_depth = 6)
loantree.fit(X_train, y_train)

Out[165]:

In [166… yhattree = loantree.predict(X_test)
print(yhattree[0:5])
print(y_test[0:5])

In [167… print(yhattree[0:20])
print(y_test[0:20])

In [168… print("The accuracy of the decision tree:", metrics.accuracy_score(y_test, yhattree))

▾ DecisionTreeClassifier

DecisionTreeClassifier(criterion='entropy', max_depth=6)

Support Vector Machine

f1 score: 0.7275882012724117
jaccard score: 0.7272727272727273

Logistic Regression

jaccard score: 0.7205882352941176
Logarithmic Loss: 0.49768878526822663
Calssification Report:
 precision recall f1-score support

 COLLECTION 0.25 0.13 0.17 15
 PAIDOFF 0.79 0.89 0.84 55

 accuracy 0.73 70
 macro avg 0.52 0.51 0.51 70
weighted avg 0.67 0.73 0.70 70

Model Evaluation using Test set

First, download and load the test set:

In [169… from sklearn import svm
svmmodel = svm.SVC(kernel = 'rbf')
svmmodel.fit(X_train, y_train)

Out[169]:

In [170… yhatsvm = svmmodel.predict(X_test)

In [171… from sklearn.metrics import f1_score
print("f1 score:", f1_score(y_test, yhatsvm, average='weighted'))
from sklearn.metrics import jaccard_score
print("jaccard score:", jaccard_score(y_test, yhatsvm, pos_label = 'PAIDOFF'))

In [172… from sklearn.linear_model import LogisticRegression

logreg = LogisticRegression(C = 0.7, solver = 'liblinear').fit(X_train, y_train)

In [173… yhatlogreg = logreg.predict(X_test)
yhat_prob = logreg.predict_proba(X_test)

In [174… print("jaccard score:", jaccard_score(y_test, yhatlogreg, pos_label = 'PAIDOFF'))
from sklearn.metrics import log_loss
print("Logarithmic Loss:", log_loss(y_test, yhat_prob))
from sklearn.metrics import classification_report
print("Calssification Report:")
print(classification_report(y_test, yhatlogreg))

In [160… from sklearn.metrics import jaccard_score
from sklearn.metrics import f1_score
from sklearn.metrics import log_loss

▾ SVC

SVC()

Load Test set for evaluation

Unnamed:
0.1

Unnamed:
0 loan_status Principal terms effective_date due_date age education Gender

0 1 1 PAIDOFF 1000 30 9/8/2016 10/7/2016 50 Bechalor female

1 5 5 PAIDOFF 300 7 9/9/2016 9/15/2016 35 Master or
Above male

2 21 21 PAIDOFF 1000 30 9/10/2016 10/9/2016 43 High School
or Below female

3 24 24 PAIDOFF 1000 30 9/10/2016 10/9/2016 26 college male

4 35 35 PAIDOFF 800 15 9/11/2016 9/25/2016 29 Bechalor male

Jaccard-score for KNN 0.7424242424242424
Jaccard-score for Decision Tree 0.7681159420289855
Jaccard-score for SVM 0.7272727272727273
Jaccard-score for Losigstic Regression 0.7205882352941176

F1-score for KNN 0.7381366459627329
F1-score for Decision Tree 0.7064793130366899
F1-score for SVM 0.7275882012724117
F1-score for Losigstic Regression 0.6953867388649997

Logarithmic Loss for Logistic Regression 0.49768878526822663

Report
You should be able to report the accuracy of the built model using different evaluation metrics:

Algorithm Jaccard F1-score LogLoss

KNN 0.724 0.738 NA

Decision Tree 0.768 0.706 NA

SVM 0.727 0.7275 NA

LogisticRegression 0.7205 0.695 0.49768

Want to learn more?

In []: !wget -O loan_test.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data

In [159… test_df = pd.read_csv('loan_test.csv')
test_df.head()

Out[159]:

In [175… print("Jaccard-score for KNN", jaccard_score(y_test, yhat, pos_label = 'PAIDOFF'))
print("Jaccard-score for Decision Tree", jaccard_score(y_test, yhattree, pos_label = 'PA
print("Jaccard-score for SVM", jaccard_score(y_test, yhatsvm, pos_label = 'PAIDOFF'))
print("Jaccard-score for Losigstic Regression", jaccard_score(y_test, yhatlogreg, pos_lab

In [176… print("F1-score for KNN", f1_score(y_test, yhat, average='weighted'))
print("F1-score for Decision Tree", f1_score(y_test, yhattree, average='weighted'))
print("F1-score for SVM", f1_score(y_test, yhatsvm, average='weighted'))
print("F1-score for Losigstic Regression", f1_score(y_test, yhatlogreg, average='weighte

In [177… print("Logarithmic Loss for Logistic Regression", log_loss(y_test, yhat_prob))

IBM SPSS Modeler is a comprehensive analytics platform that has many machine learning algorithms. It has
been designed to bring predictive intelligence to decisions made by individuals, by groups, by systems – by
your enterprise as a whole. A free trial is available through this course, available here: SPSS Modeler

Also, you can use Watson Studio to run these notebooks faster with bigger datasets. Watson Studio is IBM's
leading cloud solution for data scientists, built by data scientists. With Jupyter notebooks, RStudio, Apache
Spark and popular libraries pre-packaged in the cloud, Watson Studio enables data scientists to collaborate
on their projects without having to install anything. Join the fast-growing community of Watson Studio users
today with a free account at Watson Studio

Thanks for completing this lesson!

Author: Saeed Aghabozorgi

Saeed Aghabozorgi, PhD is a Data Scientist in IBM with a track record of developing enterprise level
applications that substantially increases clients’ ability to turn data into actionable knowledge. He is a
researcher in data mining field and expert in developing advanced analytic methods like machine learning
and statistical modelling on large datasets.

Change Log
Date (YYYY-MM-

DD) Version Changed By Change Description

2020-10-27 2.1 Lakshmi
Holla

Made changes in import statement due to updates in version of sklearn
library

2020-08-27 2.0 Malika
Singla Added lab to GitLab

© IBM Corporation 2020. All rights reserved.

http://cocl.us/ML0101EN-SPSSModeler?utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=NA-SkillsNetwork-Channel-SkillsNetworkCoursesIBMDeveloperSkillsNetworkML0101ENSkillsNetwork20718538-2022-01-01
https://cocl.us/ML0101EN_DSX?utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=NA-SkillsNetwork-Channel-SkillsNetworkCoursesIBMDeveloperSkillsNetworkML0101ENSkillsNetwork20718538-2022-01-01
https://ca.linkedin.com/in/saeedaghabozorgi?utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=NA-SkillsNetwork-Channel-SkillsNetworkCoursesIBMDeveloperSkillsNetworkML0101ENSkillsNetwork20718538-2022-01-01?utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=NA-SkillsNetwork-Channel-SkillsNetworkCoursesIBMDeveloperSkillsNetworkML0101ENSkillsNetwork20718538-2022-01-01
https://ca.linkedin.com/in/saeedaghabozorgi

