

### **Classification with Python**

In this notebook we try to practice all the classification algorithms that we have learned in this course.

We load a dataset using Pandas library, and apply the following algorithms, and find the best one for this specific dataset by accuracy evaluation methods.

Let's first load required libraries:

```
In [1]: import itertools
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import NullFormatter
import pandas as pd
import numpy as np
import matplotlib.ticker as ticker
from sklearn import preprocessing
%matplotlib inline
```

### About dataset

This dataset is about past loans. The **Loan\_train.csv** data set includes details of 346 customers whose loan are already paid off or defaulted. It includes following fields:

| Field          | Description                                                                           |
|----------------|---------------------------------------------------------------------------------------|
| Loan_status    | Whether a loan is paid off on in collection                                           |
| Principal      | Basic principal loan amount at the                                                    |
| Terms          | Origination terms which can be weekly (7 days), biweekly, and monthly payoff schedule |
| Effective_date | When the loan got originated and took effects                                         |
| Due_date       | Since it's one-time payoff schedule, each loan has one single due date                |
| Age            | Age of applicant                                                                      |
| Education      | Education of applicant                                                                |
| Gender         | The gender of applicant                                                               |

Let's download the dataset

```
In [2]: !wget -0 loan_train.csv https://cf-courses-data.s3.us.cloud-object-storage.appdomain.clo
```

```
'wget' is not recognized as an internal or external command, operable program or batch file.
```

### Load Data From CSV File

In [4]: df = pd.read\_csv('loan\_train.csv')

df.head()

| Out[4]: |     | Unnamed:<br>0.1 | Unnamed:<br>0 | loan_status | Principal | terms | effective_date | due_date  | age | education               | Gender |
|---------|-----|-----------------|---------------|-------------|-----------|-------|----------------|-----------|-----|-------------------------|--------|
|         | 0   | 0               | 0             | PAIDOFF     | 1000      | 30    | 9/8/2016       | 10/7/2016 | 45  | High School<br>or Below | male   |
|         | 1   | 2               | 2             | PAIDOFF     | 1000      | 30    | 9/8/2016       | 10/7/2016 | 33  | Bechalor                | female |
|         | 2   | 3               | 3             | PAIDOFF     | 1000      | 15    | 9/8/2016       | 9/22/2016 | 27  | college                 | male   |
|         | 3   | 4               | 4             | PAIDOFF     | 1000      | 30    | 9/9/2016       | 10/8/2016 | 28  | college                 | female |
|         | 4   | 6               | 6             | PAIDOFF     | 1000      | 30    | 9/9/2016       | 10/8/2016 | 29  | college                 | male   |
| In [5]: | df. | shape           |               |             |           |       |                |           |     |                         |        |

Out[5]: (346, 10)

#### Convert to date time object

```
In [6]: df['due_date'] = pd.to_datetime(df['due_date'])
    df['effective_date'] = pd.to_datetime(df['effective_date'])
    df.head()
```

| Out[6]: |   | Unnamed:<br>0.1 | Unnamed:<br>0 | loan_status | Principal | terms | effective_date | due_date       | age | education               | Gender |
|---------|---|-----------------|---------------|-------------|-----------|-------|----------------|----------------|-----|-------------------------|--------|
|         | 0 | 0               | 0             | PAIDOFF     | 1000      | 30    | 2016-09-08     | 2016-10-<br>07 | 45  | High School<br>or Below | male   |
|         | 1 | 2               | 2             | PAIDOFF     | 1000      | 30    | 2016-09-08     | 2016-10-<br>07 | 33  | Bechalor                | female |
|         | 2 | 3               | 3             | PAIDOFF     | 1000      | 15    | 2016-09-08     | 2016-09-<br>22 | 27  | college                 | male   |
|         | 3 | 4               | 4             | PAIDOFF     | 1000      | 30    | 2016-09-09     | 2016-10-<br>08 | 28  | college                 | female |
|         | 4 | 6               | 6             | PAIDOFF     | 1000      | 30    | 2016-09-09     | 2016-10-<br>08 | 29  | college                 | male   |

## Data visualization and pre-processing

Let's see how many of each class is in our data set

```
In [7]: df['loan status'].value counts()
```

Out[7]: PAIDOFF 260 COLLECTION 86 Name: loan\_status, dtype: int64

260 people have paid off the loan on time while 86 have gone into collection

Let's plot some columns to underestand data better:

```
In [ ]: # notice: installing seaborn might takes a few minutes
    #!conda install -c anaconda seaborn -y
```



# Pre-processing: Feature selection/extraction

age

Let's look at the day of the week people get the loan

age

In [11]: df['dayofweek'] = df['effective\_date'].dt.dayofweek
bins = np.linspace(df.dayofweek.min(), df.dayofweek.max(), 10)
g = sns.FacetGrid(df, col="Gender", hue="loan\_status", palette="Set1", col\_wrap=2)
g.map(plt.hist, 'dayofweek', bins=bins, ec="k")
g.axes[-1].legend()
plt.show()



We see that people who get the loan at the end of the week don't pay it off, so let's use Feature binarization to set a threshold value less than day 4

In [14]: df.head()

| Out[14]: |   | Unnamed:<br>0.1 | Unnamed:<br>0 | loan_status | Principal | terms | effective_date | due_date       | age | education                  | Gender | dayofv |
|----------|---|-----------------|---------------|-------------|-----------|-------|----------------|----------------|-----|----------------------------|--------|--------|
|          | 0 | 0               | 0             | PAIDOFF     | 1000      | 30    | 2016-09-08     | 2016-10-<br>07 | 45  | High<br>School or<br>Below | male   |        |
|          | 1 | 2               | 2             | PAIDOFF     | 1000      | 30    | 2016-09-08     | 2016-10-<br>07 | 33  | Bechalor                   | female |        |
|          | 2 | 3               | 3             | PAIDOFF     | 1000      | 15    | 2016-09-08     | 2016-09-<br>22 | 27  | college                    | male   |        |
|          | 3 | 4               | 4             | PAIDOFF     | 1000      | 30    | 2016-09-09     | 2016-10-<br>08 | 28  | college                    | female |        |
|          | 4 | 6               | 6             | PAIDOFF     | 1000      | 30    | 2016-09-09     | 2016-10-<br>08 | 29  | college                    | male   |        |

## In [15]: df['weekend'] = df['dayofweek'].apply(lambda x: 1 if (x>3) else 0) df.head()

| Out[15]: |   | Unnamed:<br>0.1 | Unnamed:<br>0 | loan_status | Principal | terms | effective_date | due_date       | age | education                  | Gender | dayofv |
|----------|---|-----------------|---------------|-------------|-----------|-------|----------------|----------------|-----|----------------------------|--------|--------|
|          | 0 | 0               | 0             | PAIDOFF     | 1000      | 30    | 2016-09-08     | 2016-10-<br>07 | 45  | High<br>School or<br>Below | male   |        |
|          | 1 | 2               | 2             | PAIDOFF     | 1000      | 30    | 2016-09-08     | 2016-10-<br>07 | 33  | Bechalor                   | female |        |
|          | 2 | 3               | 3             | PAIDOFF     | 1000      | 15    | 2016-09-08     | 2016-09-<br>22 | 27  | college                    | male   |        |
|          | 3 | 4               | 4             | PAIDOFF     | 1000      | 30    | 2016-09-09     | 2016-10-<br>08 | 28  | college                    | female |        |
|          | 4 | 6               | 6             | PAIDOFF     | 1000      | 30    | 2016-09-09     | 2016-10-<br>08 | 29  | college                    | male   |        |

### **Convert Categorical features to numerical values**

Let's look at gender:

```
In [16]: df.groupby(['Gender'])['loan_status'].value_counts(normalize=True)
Out[16]: Gender loan_status
female PAIDOFF 0.865385
        COLLECTION 0.134615
male PAIDOFF 0.731293
        COLLECTION 0.268707
Name: loan_status, dtype: float64
```

86 % of female pay there loans while only 73 % of males pay there loan

Let's convert male to 0 and female to 1:

| Out[17]: |   | Unnamed:<br>0.1 | Unnamed:<br>0 | loan_status | Principal | terms | effective_date | due_date       | age | education                  | Gender | dayofv |
|----------|---|-----------------|---------------|-------------|-----------|-------|----------------|----------------|-----|----------------------------|--------|--------|
|          | 0 | 0               | 0             | PAIDOFF     | 1000      | 30    | 2016-09-08     | 2016-10-<br>07 | 45  | High<br>School or<br>Below | 0      |        |
|          | 1 | 2               | 2             | PAIDOFF     | 1000      | 30    | 2016-09-08     | 2016-10-<br>07 | 33  | Bechalor                   | 1      |        |
|          | 2 | 3               | 3             | PAIDOFF     | 1000      | 15    | 2016-09-08     | 2016-09-<br>22 | 27  | college                    | 0      |        |
|          | 3 | 4               | 4             | PAIDOFF     | 1000      | 30    | 2016-09-09     | 2016-10-<br>08 | 28  | college                    | 1      |        |
|          | 4 | 6               | 6             | PAIDOFF     | 1000      | 30    | 2016-09-09     | 2016-10-<br>08 | 29  | college                    | 0      |        |

### **One Hot Encoding**

#### How about education?

```
In [18]: df.groupby(['education'])['loan status'].value counts(normalize=True)
```

| 0+[10].  | education             | loan_status  |          |  |  |  |  |
|----------|-----------------------|--------------|----------|--|--|--|--|
| Out[10]. | Bechalor              | PAIDOFF      | 0.750000 |  |  |  |  |
|          |                       | COLLECTION   | 0.250000 |  |  |  |  |
|          | High School or Below  | PAIDOFF      | 0.741722 |  |  |  |  |
|          |                       | COLLECTION   | 0.258278 |  |  |  |  |
|          | Master or Above       | COLLECTION   | 0.500000 |  |  |  |  |
|          |                       | PAIDOFF      | 0.500000 |  |  |  |  |
|          | college               | PAIDOFF      | 0.765101 |  |  |  |  |
|          |                       | COLLECTION   | 0.234899 |  |  |  |  |
|          | Name: loan status, dt | vpe: float64 |          |  |  |  |  |

#### Features before One Hot Encoding

| In [19]: | dí | [['Princ  | cipal', | ,'ter | rms','aq | ge','Gender','edu    |
|----------|----|-----------|---------|-------|----------|----------------------|
| Dut[19]: |    | Principal | terms   | age   | Gender   | education            |
|          | 0  | 1000      | 30      | 45    | 0        | High School or Below |
|          | 1  | 1000      | 30      | 33    | 1        | Bechalor             |

| 2 | 1000 | 15 | 27 | 0 | college |
|---|------|----|----|---|---------|
| 3 | 1000 | 30 | 28 | 1 | college |
| 4 | 1000 | 30 | 29 | 0 | college |

# Use one hot encoding technique to convert categorical varables to binary variables and append them to the feature Data Frame

```
In [21]: Feature = df[['Principal','terms','age','Gender','weekend']]
Feature = pd.concat([Feature,pd.get_dummies(df['education'])], axis=1)
Feature.drop(['Master or Above'], axis = 1,inplace=True)
Feature.head()
```

| Out[21]: |   | Principal | terms | age | Gender | weekend | Bechalor | High School or Below | college |
|----------|---|-----------|-------|-----|--------|---------|----------|----------------------|---------|
|          | 0 | 1000      | 30    | 45  | 0      | 0       | 0        | 1                    | 0       |
|          | 1 | 1000      | 30    | 33  | 1      | 0       | 1        | 0                    | 0       |
|          | 2 | 1000      | 15    | 27  | 0      | 0       | 0        | 0                    | 1       |
|          | 3 | 1000      | 30    | 28  | 1      | 1       | 0        | 0                    | 1       |
|          | 4 | 1000      | 30    | 29  | 0      | 1       | 0        | 0                    | 1       |

#### **Feature Selection**

Let's define feature sets, X:

```
In [22]: X = Feature
X[0:5]
```

| Out[22]: |   | Principal | terms | age | Gender | weekend | Bechalor | High School or Below | college |
|----------|---|-----------|-------|-----|--------|---------|----------|----------------------|---------|
|          | 0 | 1000      | 30    | 45  | 0      | 0       | 0        | 1                    | 0       |
|          | 1 | 1000      | 30    | 33  | 1      | 0       | 1        | 0                    | 0       |
|          | 2 | 1000      | 15    | 27  | 0      | 0       | 0        | 0                    | 1       |
|          | 3 | 1000      | 30    | 28  | 1      | 1       | 0        | 0                    | 1       |
|          | 4 | 1000      | 30    | 29  | 0      | 1       | 0        | 0                    | 1       |

What are our lables?

### Normalize Data

Data Standardization give data zero mean and unit variance (technically should be done after train test split)

Out[24]:

```
-0.38170062, 1.13639374, -0.86968108],
[ 0.51578458, 0.92071769, 0.34170148, 2.37778177, -1.20577805,
 2.61985426, -0.87997669, -0.86968108],
[ 0.51578458, -0.95911111, -0.65321055, -0.42056004, -1.20577805,
-0.38170062, -0.87997669, 1.14984679],
[0.51578458, 0.92071769, -0.48739188, 2.37778177, 0.82934003,
-0.38170062, -0.87997669, 1.14984679],
[ 0.51578458, 0.92071769, -0.3215732 , -0.42056004, 0.82934003,
-0.38170062, -0.87997669, 1.14984679]])
```

## Classification

Now, it is your turn, use the training set to build an accurate model. Then use the test set to report the accuracy of the model You should use the following algorithm:

- K Nearest Neighbor(KNN)
- Decision Tree
- Support Vector Machine
- Logistic Regression

Notice:

- You can go above and change the pre-processing, feature selection, feature-extraction, and so on, to make a better model.
- You should use either scikit-learn, Scipy or Numpy libraries for developing the classification algorithms.
- You should include the code of the algorithm in the following cells.

## K Nearest Neighbor(KNN)

Notice: You should find the best k to build the model with the best accuracy.\ warning: You should not use the **loan\_test.csv** for finding the best k, however, you can split your train\_loan.csv into train and test to find the best k.

In [161... ]

```
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split( X, y, test size=0.2, random state=4
print ('Train set:', X train.shape, y train.shape)
print ('Test set:', X test.shape, y test.shape)
```

```
Train set: (276, 8) (276,)
Test set: (70, 8) (70,)
```

```
In [162... from sklearn.neighbors import KNeighborsClassifier
        from sklearn import metrics
         Ks = 10
         std acc = np.zeros(Ks-1)
        mean acc = np.zeros(Ks-1)
         for i in range(1, Ks):
            kneighbors = KNeighborsClassifier(n neighbors = i).fit(X train, y train)
            yhat = kneighbors.predict(X test)
             mean acc[i-1] = metrics.accuracy score(y test, yhat)
             std acc[i-1]=np.std(yhat==y test)/np.sqrt(yhat.shape[0])
        print("The best accuracy was", mean_acc.max(), "with k =", mean acc.argmax()+1)
```

```
The best accuracy was 0.7857142857142857 with k = 7
```



## **Decision Tree**

Out[165]:

DecisionTreeClassifier

DecisionTreeClassifier(criterion='entropy', max\_depth=6)

```
In [166... yhattree = loantree.predict(X_test)
    print(yhattree[0:5])
    print(y_test[0:5])
```

```
['PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF']
['PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF']
```

```
In [167... print(yhattree[0:20])
    print(y_test[0:20])
```

['PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'COLLECTION' 'PAIDOFF' 'PAIDOFF'

In [168... print("The accuracy of the decision tree:", metrics.accuracy\_score(y\_test, yhattree))

## **Support Vector Machine**



```
f1 score: 0.7275882012724117
jaccard score: 0.7272727272727273
```

## **Logistic Regression**

| In [172 | <pre>from sklearn.linear_model import LogisticRegression</pre> |              |                          |            |              |                                      |  |  |  |  |  |  |  |
|---------|----------------------------------------------------------------|--------------|--------------------------|------------|--------------|--------------------------------------|--|--|--|--|--|--|--|
|         | logreg = Logi                                                  | sticRegressi | on (C = 0.               | 7, solver  | = 'liblinear | <pre>c').fit(X_train, y_train)</pre> |  |  |  |  |  |  |  |
|         |                                                                |              |                          |            |              |                                      |  |  |  |  |  |  |  |
| In [173 | yhatlogreg =                                                   | logreg.predi | ct <mark>(</mark> X_test | .)         |              |                                      |  |  |  |  |  |  |  |
|         | <pre>yhat_prob = logreg.predict_proba(X_test)</pre>            |              |                          |            |              |                                      |  |  |  |  |  |  |  |
|         |                                                                |              |                          |            |              |                                      |  |  |  |  |  |  |  |
| In [174 | print("jaccar                                                  | d score:", j | accard sc                | ore(y test | , yhatlogree | , pos label = 'PAIDOFF'))            |  |  |  |  |  |  |  |
| L       | from sklearn.metrics import log loss                           |              |                          |            |              |                                      |  |  |  |  |  |  |  |
|         | print ("Logari                                                 | thmic Loss:" | , log los                | s(y test,  | yhat prob))  |                                      |  |  |  |  |  |  |  |
|         | from sklearn.metrics import classification report              |              |                          |            |              |                                      |  |  |  |  |  |  |  |
|         | print("Calssification Report:")                                |              |                          |            |              |                                      |  |  |  |  |  |  |  |
|         | <pre>print(classification report(y test, yhatlogreg))</pre>    |              |                          |            |              |                                      |  |  |  |  |  |  |  |
|         |                                                                |              |                          |            |              |                                      |  |  |  |  |  |  |  |
|         | jaccard score                                                  | : 0.72058823 | 52941176                 |            |              |                                      |  |  |  |  |  |  |  |
|         | Logarithmic L                                                  | oss: 0.49768 | 878526822                | 663        |              |                                      |  |  |  |  |  |  |  |
|         | Calssificatio                                                  | n Report:    |                          |            |              |                                      |  |  |  |  |  |  |  |
|         |                                                                | precision    | recall                   | fl-score   | support      |                                      |  |  |  |  |  |  |  |
|         |                                                                | 0.25         | 0 13                     | 0 17       | 15           |                                      |  |  |  |  |  |  |  |
|         | DALDOFE                                                        | 0.23         | 0.13                     | 0.17       | 10           |                                      |  |  |  |  |  |  |  |
|         | PAIDOFF                                                        | 0.79         | 0.09                     | 0.04       | 55           |                                      |  |  |  |  |  |  |  |
|         | accuracy                                                       |              |                          | 0.73       | 70           |                                      |  |  |  |  |  |  |  |
|         | macro avg                                                      | 0.52         | 0.51                     | 0.51       | 70           |                                      |  |  |  |  |  |  |  |
|         | weighted avg                                                   | 0.67         | 0.73                     | 0.70       | 70           |                                      |  |  |  |  |  |  |  |

## Model Evaluation using Test set

```
In [160...
```

```
from sklearn.metrics import jaccard_score
from sklearn.metrics import f1_score
from sklearn.metrics import log loss
```

First, download and load the test set:

#### Load Test set for evaluation

```
test df = pd.read csv('loan test.csv')
In [159...
          test df.head()
Out[159]:
              Unnamed:
                        Unnamed:
                                 Ioan status Principal terms effective date due date age
                                                                                       education Gender
                   0.1
                               0
                     1
          0
                               1
                                    PAIDOFF
                                               1000
                                                       30
                                                               9/8/2016 10/7/2016
                                                                                  50
                                                                                        Bechalor
                                                                                                 female
                                                                                        Master or
          1
                     5
                               5
                                    PAIDOFF
                                                300
                                                        7
                                                               9/9/2016 9/15/2016
                                                                                  35
                                                                                                  male
                                                                                          Above
                                                                                      High School
          2
                    21
                              21
                                    PAIDOFF
                                               1000
                                                       30
                                                              9/10/2016 10/9/2016
                                                                                  43
                                                                                                 female
                                                                                        or Below
          3
                    24
                              24
                                    PAIDOFF
                                               1000
                                                       30
                                                              9/10/2016 10/9/2016
                                                                                  26
                                                                                         college
                                                                                                  male
                              35
                                                800
                                                                                  29
          4
                    35
                                    PAIDOFF
                                                       15
                                                              9/11/2016 9/25/2016
                                                                                        Bechalor
                                                                                                  male
          print("Jaccard-score for KNN", jaccard score(y test, yhat, pos label = 'PAIDOFF'))
In [175...
          print("Jaccard-score for Decision Tree", jaccard score(y test, yhattree, pos label = 'PA
          print("Jaccard-score for SVM", jaccard score(y test, yhatsvm, pos label = 'PAIDOFF'))
          print("Jaccard-score for Losigstic Regression", jaccard score(y test, yhatlogreg, pos la
          Jaccard-score for KNN 0.7424242424242424
          Jaccard-score for Decision Tree 0.7681159420289855
          Jaccard-score for SVM 0.7272727272727273
          Jaccard-score for Losigstic Regression 0.7205882352941176
In [176...
          print("F1-score for KNN", f1 score(y test, yhat, average='weighted'))
          print("F1-score for Decision Tree", f1_score(y_test, yhattree, average='weighted'))
          print("F1-score for SVM", f1 score(y test, yhatsvm, average='weighted'))
          print("F1-score for Losigstic Regression", f1 score(y test, yhatlogreg, average='weighte
          F1-score for KNN 0.7381366459627329
          F1-score for Decision Tree 0.7064793130366899
          F1-score for SVM 0.7275882012724117
          F1-score for Losigstic Regression 0.6953867388649997
          print("Logarithmic Loss for Logistic Regression", log loss(y test, yhat prob))
In [177...
```

Logarithmic Loss for Logistic Regression 0.49768878526822663

## Report

You should be able to report the accuracy of the built model using different evaluation metrics:

| Algorithm          | Jaccard | F1-score | LogLoss |
|--------------------|---------|----------|---------|
| KNN                | 0.724   | 0.738    | NA      |
| Decision Tree      | 0.768   | 0.706    | NA      |
| SVM                | 0.727   | 0.7275   | NA      |
| LogisticRegression | 0.7205  | 0.695    | 0.49768 |

### Want to learn more?

IBM SPSS Modeler is a comprehensive analytics platform that has many machine learning algorithms. It has been designed to bring predictive intelligence to decisions made by individuals, by groups, by systems – by your enterprise as a whole. A free trial is available through this course, available here: SPSS Modeler

Also, you can use Watson Studio to run these notebooks faster with bigger datasets. Watson Studio is IBM's leading cloud solution for data scientists, built by data scientists. With Jupyter notebooks, RStudio, Apache Spark and popular libraries pre-packaged in the cloud, Watson Studio enables data scientists to collaborate on their projects without having to install anything. Join the fast-growing community of Watson Studio users today with a free account at Watson Studio

### Thanks for completing this lesson!

#### Author: Saeed Aghabozorgi

Saeed Aghabozorgi, PhD is a Data Scientist in IBM with a track record of developing enterprise level applications that substantially increases clients' ability to turn data into actionable knowledge. He is a researcher in data mining field and expert in developing advanced analytic methods like machine learning and statistical modelling on large datasets.

## Change Log

| Date (YYYY-MM-<br>DD) | Version | Changed By       | Change Description                                                            |
|-----------------------|---------|------------------|-------------------------------------------------------------------------------|
| 2020-10-27            | 2.1     | Lakshmi<br>Holla | Made changes in import statement due to updates in version of sklearn library |
| 2020-08-27            | 2.0     | Malika<br>Singla | Added lab to GitLab                                                           |
|                       |         |                  |                                                                               |

© IBM Corporation 2020. All rights reserved.